Abstract
Phylogenetic and geographic evidence suggest that many parthenogenetic organisms have evolved recently and have spread rapidly. These patterns play a critical role in our understanding of the relative merits of sexual versus asexual reproductive modes, yet their interpretation is often hampered by a lack of detail. Here we present a detailed phylogeographic study of a vertebrate parthenogen, the Australian gecko Heteronotia binoei, in combination with statistical and biophysical modeling of its distribution during the last glacial maximum. Parthenogenetic H. binoei occur in the Australian arid zone and have the widest range of any known vertebrate parthenogen. They are broadly sympatric with their sexual counterparts, from which they arose via hybridization. We have applied nested clade phylogeographic, effective migration, and mismatch distribution analyses to mitochondrial DNA (mtDNA) sequences obtained for 319 individuals sampled throughout the known geographic ranges of two parthenogenetic mitochondrial lineages. These analyses provide strong evidence for past range expansion events from west to east across the arid zone, and for continuing eastward range expansion. Parthenogen formation and range expansion events date to the late Pleistocene, with one lineage expanding from the northwest of its present range around 240,000 years ago and the second lineage expanding from the far west around 70,000 years ago. Statistical and biophysical distribution models support these inferences of recent range expansion, with suitable climatic conditions during the last glacial maximum most likely limited to parts of the arid zone north and west of much of the current ranges of these lineages. Combination of phylogeographic analyses and distribution modeling allowed considerably stronger inferences of the history of this complex than either would in isolation, illustrating the power of combining complementary analytical approaches.
Highlights
All vertebrate parthenogenetic lineages examined in any detail have been found to be quite young in evolutionary terms, typically being no more than one million years old and often much younger [1]
Despite the apparently limited life-spans of most parthenogenetic lineages, they can potentially be very successful in the short term, as evidenced by their often broad geographic distributions and by molecular signatures of rapid range expansions [6,7,8]
Formation, put the 3N1 expansion at 0.24 MYA, and the 3N2 expansion at 0.07 MYA. These dates for NCPA inferences of initial range expansion are based on the youngest monophyletic clade of the haplotype network for which the inference of range expansion applies [20], which in each case corresponds to one or more of the highest level nesting clades; these range expansion dates set lower bounds for the ages of each lineage
Summary
All vertebrate parthenogenetic lineages examined in any detail have been found to be quite young in evolutionary terms, typically being no more than one million years old and often much younger [1]. To properly understand the evolutionary dynamics of parthenogenesis, it is necessary to compare the amount and distribution of genetic variation in parthenogenetic lineages with that in closely related sexual lineages [1]. This can allow the identification of parental taxa [13] as well as provide information on the number of clonal origins [14], the ages of clonal lineages [15], and the proportion of genetic variation in parthenogens due to postformation mutation [16]. Combination of phylogeographic approaches with analyses of ecological tolerances and interactions can permit cross-validation of phylogeographic inferences [20] and lead to considerably more insight into the underlying processes that generate the observed patterns of geographic distributions, amounts and distributions of genetic variation, and ecological and climatic correlates [e.g. 21, 22, 23]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.