Abstract

Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.