Abstract

Summary In this paper we describe the analysis, test, and design work to deliver an optimal lower completion for a trilateral well by integrating passive and autonomous inflow-control devices (ICDs) (AICDs) at the Alvheim Field offshore Norway. In 2015, both passive ICDs and AICDs were tested in the laboratory with Alvheim fluids at reservoir conditions. The experimental flow testing demonstrated that the AICD chokes gas more efficiently than the passive ICD. The experimental results enabled correct modeling of AICDs in both the reservoir-simulation model and the simpler steady-state inflow model. The following lower-completion strategy was established for the new well: Where the well was close to the overlying gas cap, AICDs should be used, whereas passive ICDs with variable strength were to be used elsewhere to optimize the inflow. During the drilling phase, the steady-state model was updated with the as-drilled information; the lower-completion design for each branch focused on obtaining what was estimated to be an optimal inflow depending on the oil volume per drainage area. A key uncertainty in the design work was whether shaly zones along the wellbore would creep/collapse with time and act effectively as packers. The lower completion covered 7 km of reservoir penetration in the three branches, and 15 unique oil tracers were installed to evaluate the cleanup and the inflow profile along the well. The well started producing in May 2016 and a successful cleanup was confirmed by oil-tracer responses. In August 2016, a restart-tracer-sampling campaign was performed after a 12-day shut-in, and this formed the basis for a “chemical production log.” The tracer-based inflow interpretation was compared quantitatively with the model-predicted inflow and qualitatively to the tracer responses seen during the cleanup. The comparison confirmed that the lower completion works as initially planned. The interpretation further indicated that the upper zone has a lower degree of pressure support than the lower zone, and that the larger shaly sections have creeped/collapsed and act as packers. The well has exceeded predrill production expectations, with an average oil rate of 3375 std m3/d (21,240 STB/D) during the first production year. A large part of exceeding the predrill expectations is attributed to the lower-completion design, where the focus has been to optimize such that the whole well contributes, from the heel to all toes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.