Abstract

We describe a synthetic pathway to tailor-made amphiphilic macromonomers by a combination of anionic ring-opening polymerization and copper-catalyzed azide–alkyne cycloaddition (CuAAC). Linear polyglycerol and poly(glyceryl glycerol) were synthesized in a controlled manner by anionic ring-opening polymerization of ethoxyethyl glycidyl ether or isopropylidene glyceryl glycidyl ether, respectively, with narrow and monomodal molecular weight distributions (Mw/Mn < 1.20) and molecular weights ranging from 850 g mol−1 to 2500 g mol−1. After end-capping with propargyl bromide and removal of the protecting groups, the hydrophilic precursors were quantitatively clicked to a series of hydrophobic azido alkyl methacrylates by copper-catalyzed azide–alkyne cycloaddition obtaining well-defined macromonomers with adjustable amphiphilic properties. Radical polymerization of these amphiphiles afforded graft copolymers with molecular weights up to 470 000 g mol−1 (SEC-MALLS in DMF).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.