Abstract

AbstractOptical and acoustic backscatter measurements are routinely utilized to monitor suspended‐sediment concentration (M); however, both measurements are affected by changes in particle size and density. In this study, optical and acoustic backscatter measurements are combined to a single parameter, the sediment composition index (SCI), to quantify M, mean particle radius by number (ao), the fraction of sediment <20 μm by diameter (), and particle bulk apparent density (ρbulk). Data are analyzed from Chesapeake Bay and five rivers of Queensland, Australia. SCI is utilized to predict the ratio of M to acoustic backscatter under changes in ao and ρbulk (R2 ranged from 0.6 to 0.98 across all data sets) and combined with acoustic backscatter to predict estimates of M that are independent of changes in ao and ρbulk. SCI is proportional to log10(ao) and for SCI from acoustic backscatter measured at 6 MHz (R2 = 0.8 and 0.74, respectively, p‐value < 0.001, n = 133), while SCI(log10(ao)) and SCI() from acoustic backscatter measured at 2 MHz or lower are sensitive to changes in floc fractal dimension. Estimates of ρbulk from SCI are biased by changes in particle size (R2 is 0.1–0.5 across all datasets). This study builds upon recent work that derived SCI to quantify composition of sand and mud in suspension and demonstrates the utility of the approach in systems transporting flocculated silt and clay. Future research directions are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call