Abstract
Seabed sediment texture can be mapped by geostatistical prediction from limited direct observations such as grab-samples. A geostatistical model can provide local estimates of the probability of each texture class so the most probable sediment class can be identified at any unsampled location, and the uncertainty of this prediction can be quantified. In this paper we show, in a case study off the northeast coast of England, how swath bathymetry and backscatter can be incorporated into a geostatistical linear mixed model (LMM) as fixed effects (covariates).Parameters of the LMM were estimated by maximum likelihood which allowed us to show that both covariates provided useful information. In a cross-validation, each observation was predicted from the rest using the LMMs with (i) no covariates, or (ii) bathymetry and backscatter as covariates. The proportion of cases in which the most probable class according to the prediction corresponded to the observed class was increased (from 58% to 65% of cases) by including the covariates which also increased the information content of the predictions, measured by the entropy of the class probabilities. A qualitative assessment of the geostatistical results shows that the model correctly predicts, for example, the occurrence of coarser sediment over discrete glacial sediment landforms, and muddier sediment in relatively quiescent, localized deep water environments. This demonstrates the potential for assimilating geophysical data with direct observations by the LMM, and could offer a basis for a routine mapping procedure which incorporates these and other ancillary information such as manually-interpreted geological and geomorphological maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.