Abstract
Heart rate (HR) estimation using photoplethysmography (PPG) has drawn increasing attention in the field of wearable technology due to its advantages with higher degree of usability and lower cost than Electrocardiograph. It has been widely used in wearable devices, such as smart-watches for fitness tracking and vital sign monitoring. However, motion artifact is a strong interference, preventing accurate estimation of HR. Signal decomposition and adaptive filtering are two popular approaches for motion artifact removal, but each of them has inherent drawbacks. In this paper, a hybrid motion artifact removal method is proposed, which combines nonlinear adaptive filtering and signal decomposition, getting the best of both approaches. The method was evaluated on the PPG database used in the 2015 IEEE Signal Processing Cup. The experimental results showed that the method achieved the average absolute error of 1.16 beat per minutes (BPM) on the 12 training data sets, and 2.98 BPM on the ten testing data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.