Abstract

Conventional approaches to statistical inference preclude structures that facilitate incorporation of supplemental information acquired from similar circumstances. For example, the analysis of data obtained using perfusion computed tomography to characterize functional imaging biomarkers in cancerous regions of the liver can benefit from partially informative data collected concurrently in non-cancerous regions. This paper presents a hierarchical model structure that leverages all available information about a curve, using penalized splines, while accommodating important between-source features. Our proposed methods flexibly borrow strength from the supplemental data to a degree that reflects the commensurability of the supplemental curve with the primary curve. We investigate our method's properties for nonparametric regression via simulation, and apply it to a set of liver cancer data. We also apply our method for a semiparametric hazard model to data from a clinical trial that compares time to disease progression for three colorectal cancer treatments, while supplementing inference with information from a previous trial that tested the current standard of care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.