Abstract
We investigate the potential for extracting heat from produced natural gas and utilizing supercritical carbon dioxide (CO2) as a working fluid for the dual purpose of enhancing gas recovery (EGR) and extracting geothermal energy (CO2-Plume Geothermal – CPG) from deep natural gas reservoirs for electric power generation, while ultimately storing all of the subsurface-injected CO2. Thus, the approach constitutes a CO2 capture double-utilization and storage (CCUUS) system. The synergies achieved by the above combinations include shared infrastructure and subsurface working fluid. We integrate the reservoir processes with the wellbore and surface power-generation systems such that the combined system’s power output can be optimized. Using the subsurface fluid flow and heat transport simulation code TOUGH2, coupled to a wellbore heat-transfer model, we set up an anticlinal natural gas reservoir model and assess the technical feasibility of the proposed system. The simulations show that the injection of CO2 for natural gas recovery and for the establishment of a CO2 plume (necessary for CPG) can be conveniently combined. During the CPG stage, following EGR, a CO2-circulation mass flowrate of 110 kg/s results in a maximum net power output of 2 MWe for this initial, conceptual, small system, which is scalable. After a decade, the net power decreases when thermal breakthrough occurs at the production wells. The results confirm that the combined system can improve the gas field’s overall energy production, enable CO2 sequestration, and extend the useful lifetime of the gas field. Hence, deep (partially depleted) natural gas reservoirs appear to constitute ideal sites for the deployment of not only geologic CO2 storage but also CPG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.