Abstract

The strong nonlinearity of large and highly connected reaction systems, such as metabolic networks, hampers the determination of variations in reaction fluxes from variations in species abundances, when comparing different steady states of a given system. We hypothesize that patterns in species abundance variations exist that mainly depend on the kernel of the stoichiometric matrix and allow for predictions of flux variations. To investigate this hypothesis, we applied a multi-target regression Deep Neural Network (DNN) to data generated via numerical simulations of an Ordinary Differential Equation (ODE) model of yeast metabolism, upon Monte Carlo sampling of the kinetic parameters. For each parameter configuration, we compared two steady states corresponding to different environmental conditions. We show that DNNs can predict relative fluxes impressively well even when a random subspace of input features is supplied, supporting the existence of recurrent variation patterns in abundances of chemical species, which can be recognized automatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.