Abstract

The traditional classification of avian Haemosporida is based mainly on morphology and life history traits. Recently, molecular hypotheses have challenged the traditional classification, leading to contradictory opinions on whether morphology is phylogenetically informative. However, the morphology has never been used to reconstruct the relationships within the group. We inferred the phylogeny of avian Haemosporida from 133 morphological characters present in blood stages. We included all species with at least one mitochondrial gene characterized (n = 93). The morphological hypothesis was compared with the one retrieved from mitochondrial DNA (mtDNA) nucleotide sequences and a hypothesis that used a combination of morphological and molecular data (i.e., total evidence). In order to recover the evolutionary history and identify phylogenetically and taxonomically informative characters, they were mapped on the total evidence phylogeny. The morphological hypothesis presented more polytomies than the other two, especially within Haemoproteus. In the molecular hypothesis, the two Haemoproteus subgenera are paraphyletic, and some relationships within Parahaemoproteus were resolved. By combining the morphological and molecular data, we were able to resolve the majority of polytomies and posterior probabilities increased. We identified a unique combination of morphological traits, clearly differentiating avian Haemosporida genera, sub-genera of Leucocytozoon and Haemoproteus, and some Plasmodium sub-genera. Plasmodium had the highest number of synapomorphies. Furthermore, 86% of the species presented a unique combination of taxonomically informative characters. A limiting factor was the mismatch of traits characterized in species descriptions, leading to a morphological matrix with a considerable amount of missing data, particularly for the stages of early young and young gametocytes (67% of all missing data). Characters lacking information for the majority of species included the colour of pigment granules, the cytoplasm appearance, and the presence and dimensions of vacuoles. According to our results, the combination of morphology and mtDNA proved to be a robust alternative to reconstruct the relationships among avian Haemosporida, obtaining a resolution and support similar to that obtained using full mitochondrial genome sequences for over 100 lineages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call