Abstract

Computational prediction of limiting activity coefficients is of great relevance for process design. For highly nonideal mixtures including molecules with directed interactions, methods that maintain the molecular character of the solvent are most promising. Computational expense and force-field deficiencies are the main limiting factors that prevent the use of high-throughput molecular dynamics (MD) simulations in a predictive setup. The combination of MD simulations and machine learning used in this work accounts for both issues. Comparison to published data including free-energy simulations, COSMO-RS and UNIFAC models, reveals competitive prediction accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.