Abstract
The increasing global perception of the importance of microbial inoculants to promote productivity and sustainability in agriculture prompts the adoption of bio-inputs by the farmers. The utilization of selected elite strains of nitrogen-fixing and other plant-growth promoting microorganisms in single inoculants creates a promising market for composite inoculants. However, combining microorganisms with different physiological and nutritional needs requires biotechnological development. We report the development of a composite inoculant containing Bradyrhizobium diazoefficiens and Azospirillum brasilense for the soybean crop. Evaluation of use of carbon sources indicates differences between the microbial species, with Bradyrhizobium growing better with mannitol and glycerol, and Azospirillum with malic acid and maleic acid, allowing the design of a formulation for co-culture. Species also differ in their growth rates, and the best performance of both microorganisms occurred when Azospirillum was inoculated on the third day of growth of Bradyrhizobium. The composite inoculant developed was evaluated in five field trials performed in Brazil, including areas without and with naturalized populations of Bradyrhizobium. The composite inoculant resulted in symbiotic performance comparable to the application of the two microorganisms separately. In comparison to the single inoculation with Bradyrhizobium, co-inoculation resulted in average increases of 14.7% in grain yield and 16.4% in total N accumulated in the grains. The performance of the composite inoculant was similar or greater than that of the non-inoculated control receiving a high dose of N-fertilizer, indicating the importance of the development and validation of inoculants carrying multiple beneficial microorganisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.