Abstract

We have developed a variety of electrically small, low-profile, planar, near-field resonant parasitic (NFRP) antennas [1], [2], [3], [4]. These NFRP antennas have been generally designed on a ground plane with a low-profile footprint, but not conformal above a ground plane. Furthermore, being electrically small, their directivities and bandwidths are approximately equal to those of an infinitesimal dipole. Many wireless applications demand higher directivities and increased bandwidths with a conformal form factor. This contribution further develops these metamaterial-inspired NFRP antenna designs to incorporate electromagnetic band gap (EBG) structures to achieve higher directivities and bandwidths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.