Abstract

Licorice is a well-known Chinese medicinal plant that is widely used to treat multiple diseases and process food; however, wild licorice is now facing depletion. Therefore, there is an urgent need to identify and protect licorice germplasm diversity. In this study, metabolomic and transcriptomic analyses were conducted to investigate the biodiversity and potential medicinal value of the rare wild Glycyrrhiza squamulose. A total of 182 differentially accumulated metabolites and 395 differentially expressed genes were identified by comparing Glycyrrhiza uralensis and Glycyrrhiza squamulose. The molecular weights of the chemical component of G. squamulose were comparable with those of G. uralensis, suggesting that G. squamulose may have medicinal value. Differentially accumulated metabolites (DAMs), mainly flavonoids such as kaempferol-3-O-galactoside, kaempferol-3-O-(6ʺmalonyl) glucoside, and hispidulin-7-O-glucoside, showed potential vitality in G. squamulose. Comparative transcriptomics with G. uralensis showed that among the 395 differentially expressed genes (DEGs), 69 were enriched in the isoflavonoid biosynthesis pathway. Multiomics analysis showed that the distinction in flavonoid biosynthesis between G. squamulose and G. uralensis was strongly associated with the expression levels of IF7GT and CYP93C. In addition to identifying similarities and differences between G. squamulose and G. uralensis, this study provides a theoretical basis to protect and investigate rare species such as G. squamulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call