Abstract

Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate.

Highlights

  • Drugs may interact with numerous molecules in the human body

  • We developed a novel scoring approach employing two machine learning systems, which were embedded as a part of a pipeline implementing a network-based screening approach that integrates curated signaling networks, bioinformatics databases, and molecular docking simulation to comprehensively and rapidly evaluate potential binding affinities of given drugs against proteins involved in a signaling network

  • The first machine learning system we employed (A) was a rescoring function developed to assess binding modes generated by docking tools and to rank them

Read more

Summary

Introduction

Drugs may interact with numerous molecules in the human body. Approximately 35% of known drugs or drug leads present multi-target activity [1]. Even when a drug is claimed to have high selectivity, it probably binds to proteins that are not identified as targets. Such unexpected off-target interactions may result in adverse reactions, which increase therapeutic risks and negatively impact drug development. An example of this is the cardiotoxicity of the tyrosine kinase inhibitor Sunitinib [2]. For example, was initially developed as a RAF kinase inhibitor, but its therapeutic contribution in curing renal and hepatocellular cancers was later ascribed to its inhibition of VEGFR2 and PDGFR, and probably other targets as well [7].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.