Abstract
Events such as surges in demand or lane blockages can create queue spillbacks even during off-peak periods, resulting in delays and spillbacks to upstream intersections. To address this issue, some transportation agencies have started implementing processes to change signal timings in real time based on traffic signal engineers’ observations of incident and traffic conditions at the intersections upstream and downstream of the congested locations. Decisions to change the signal timing are governed by many factors, such as queue length, conditions of the main and side streets, potential of traffic spilling back to upstream intersections, the importance of upstream cross streets, and the potential of the queue backing up to a freeway ramp. This paper investigates and assesses automating the process of updating the signal timing plans during non-recurrent conditions by capturing the history of the responses of the traffic signal engineers to non-recurrent conditions and utilizing this experience to train a machine learning model. A combination of recursive partitioning and regression decision tree (RPART) and fuzzy rule-based system (FRBS) is utilized in this study to deal with the vagueness and uncertainty of human decisions. Comparing the decisions made based on the resulting fuzzy rules from applying the methodology with previously recorded expert decisions for a project case study indicates accurate recommendations for shifts in the green phases of traffic signals. The simulation results indicate that changing the green times based on the output of the fuzzy rules decreased delays caused by lane blockages or demand surge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.