Abstract

An exciting frontier in circuit neuroscience lies at the intersection between neural network mapping and single-cell genomics. Monosynaptic rabies viruses provide a promising platform for the merger of circuit mapping methods with -omics approaches. However, three key limitations have hindered the extraction of physiologically meaningful gene expression profiles from rabies-mapped circuits: inherent viral cytotoxicity, high viral immunogenicity and virus-induced alteration of cellular transcriptional regulation. These factors alter the transcriptional and translational profiles of infected neurons and their neighboring cells. To overcome these limitations we applied a self-inactivating genomic modification to the less immunogenic rabies strain, CVS-N2c, to generate a self-inactivating CVS-N2c rabies virus (SiR-N2c). SiR-N2c not only eliminates undesired cytotoxic effects but also substantially reduces gene expression alterations in infected neurons and dampens the recruitment of innate and acquired immune responses, thus enabling open-ended interventions on neural networks and their genetic characterization using single-cell genomic approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call