Abstract

Motivated by the excellent features exhibited by sulfone functional groups in the development of high-dielectric polymer materials, this work assesses the combination of linear and cyclic sulfone structures through copolymerization to prepare novel polymer materials exhibiting high dielectric constants (ԑr'), low dissipative behavior, and improved thermal properties. Five new polymethacrylate-based copolymers with varying compositions were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. The correct structure and macromolecular nature of the devised materials were confirmed by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H/13C NMR), and gel permeation chromatography (GPC), while their thermal properties were evaluated using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). All specimens exhibited adequate thermal properties for most capacitor applications in terms of onset degradation (Ti) and glass transition (Tg) temperatures. All materials degraded well above 250 °C, with increased Ti and Tg values depending on the final composition of the cyclic sulfone monomer in the material. The incorporation of cyclic sulfones not only increased the thermal robustness of the specimens but also raised their Tg values to as high as 189 °C, notably expanding the range of temperatures where these systems can operate without dissipative phenomena. More importantly, broadband dielectric spectroscopy (BDS) revealed that all samples exhibited dielectric properties notably superior to those of conventional polymer materials, with high ԑr' values between 6.0 and 8.9 (at 25 °C and 1 Hz) and low loss factors (Tan(δ) < 0.018). Overall, the present work successfully demonstrates the advantages of including cyclic structures with high dipole moments in polymeric backbones, offering a new strategy to enhance the thermal and dielectric properties of high-dielectric polymer materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.