Abstract
Motivated by the need to study nonequilibrium evolutions of many-electron systems at the atomistic ab initio level, as they occur in modern devices and applications, we developed a quantum dynamics approach bridging master equations and surface hopping (SH). The Lindblad master equation (LME) allows us to propagate efficiently ensembles of particles, while SH provides nonperturbative evaluation of transition rates that evolve in time and depend explicitly on nuclear geometry. We implemented the LME-SH technique within real-time time-dependent density functional theory using global flux SH, and we demonstrated its efficiency and utility by modeling metallic films, in which charge-phonon dynamics was studied experimentally and showed an unexpectedly strong dependence on adhesion layers. The LME-SH approach provides a general framework for modeling efficiently quantum dynamics in a broad range of complex many-electron condensed-matter and nanoscale systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.