Abstract

Building demolition waste presents a significant challenge due to its large scale. Especially, the treatment of waste (i.e. demolition, collection, sorting, transportation, recycling and landfill) has environmental implications, e.g. carbon emissions due to energy consumed by equipment and vehicles. Therefore, it is imperative to identify the appropriate waste treatment methods with low carbon emissions. However, previous studies predominately focused on quantifying the carbon emission of buildings. In contrast, the carbon emission derived from the treatment of building demolition waste is largely overlooked. A conceptual framework is developed in this study to facilitate the assessment of carbon emissions over the life cycle of building demolition waste. In this conceptual framework, Building Information Modelling provides an effective approach to harvest data and feed into the Life Cycle Assessment. Case study of a high-rise residential building was conducted to showcase how this framework can be implemented in practice. Results showed that the environmental benefit derived from recycling of building demolition waste varies from one material to another. The recycling of metal waste has far higher environmental benefits compared to masonry wastes. In particular, aluminum could contribute to as high as 45% of carbon emission reduction despite only accounting for 0.66% of the total weight. Across various lifecycle stages, the onsite collection and sorting is the biggest contributor to the total carbon emission. In addition, on-site recycling has better performance compared to factory recycling and landfill in terms of carbon emissions. Furthermore, a large scale inventories are developed as an outcome of this case study. These findings provide useful inputs to the future endeavor of building demolition waste recycling in a bid to reduce the associated carbon emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.