Abstract
Local descriptors, Local Binary Pattern (LBP) and Scale Invariant Feature Transform (SIFT) are widely used in various computer applications. They emphasize different aspects of image contents. In this letter, we propose to combine them in sparse coding for categorizing scene images. First, we regularly extract LBP and SIFT features from training images. Then, corresponding to each feature, a visual word codebook is constructed. The obtained LBP and SIFT codebooks are used to create a two-dimensional table, in which each entry corresponds to an LBP visual word and a SIFT visual word. Given an input image, LBP and SIFT features extracted from the same positions of this image are encoded together based on sparse coding. After that, spatial max pooling is adopted to determine the image representation. Obtained image representations are converted into one-dimensional features and classified by utilizing SVM classifiers. Finally, we conduct extensive experiments on datasets of Scene Categories 8 and MIT 67 Indoor Scene to evaluate the proposed method. Obtained results demonstrate that combining features in the proposed manner is effective for scene categorization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.