Abstract
A novel approach to facial expression recognition based on the combination of local binary pattern (LBP) and Adaboost is proposed. Firstly, facial expression images are processed with LBP operator, which can eliminate the effect of environment lighting in a certain extent and has the powerful capability of texture feature description. And then facial expression features are presented with LBP histograms of expression image which is divided into several blocks. The features with powerful discriminability are selected by a modified Adaboost so as to predigest the design of classifier and shorten the cost time. Finally, the support vector machine (SVM) classifier is used for expression classification. The algorithm is implemented with Matlab and experimented on Japanese female facial expression database (JAFFE database). A facial expression recognition rate of 65.71% for person-independent is obtained and shows the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.