Abstract

Least squares support vector machine (LSSVM) has been used in soft sensor modeling in recent years. In developing a successful model based on LSSVM, the first important step is feature extraction. Principal components analysis (PCA) is a usual method for linear feature extraction and kernel PCA (KPCA) is a nonlinear PCA developed by using the kernel method. KPCA can efficiently extract the nonlinear relationship between original inputs. This paper proposes to combine KPCA with LSSVM to forecast the Mooney-viscosity of styrene butadiene rubber (SBR). KPCA is firstly applied for feature extraction. Then LSSVM is applied to proceed regression modeling. The experiment results show that KPCA-LSSVM features high learning speed, good approximation and generalization ability compared with SVM and PCA-SVM. The root mean square errors of the Mooney-viscosity in the KPCA-LSSVM, PCA-LSSVM and LSSVM are 0.0145, 0.0377 and 0.1775 respectively. LSSVM with KPCA for feature extraction has best performance. It may be used to efficiently guide production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call