Abstract
Extreme multi-label classification problems occur in different applications such as prediction of tags or advertisements. We propose a new algorithm that predicts labels using a linear ensemble of labels from instance- and feature-based nearest neighbours. In the feature-based nearest neighbours method, we precompute a matrix containing the similarities between each feature and label. For the instance-based nearest neighbourhood, we create an algorithm that uses an inverted index to compute cosine similarity on sparse datasets efficiently. We extend this baseline with a new top-k query algorithm that combines term-at-a-time and document-at-a-time traversal with tighter pruning based on a partition of the dataset. On ten real-world datasets, we find that our method outperforms state-of-the-art methods such as multi-label k-nearest neighbours, instance-based logistic regression, binary relevance with support vector machines and FastXml on different evaluation metrics. We also find that our algorithm is orders of magnitude faster than these baseline algorithms on sparse datasets and requires less than 20 ms per instance to predict labels for extreme datasets without the need for expensive hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Science and Analytics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.