Abstract

To investigate the encapsulation and oral delivery efficiency of milled starch particles stabilized Pickering emulsions for lipophilic bioactive compounds, in vitro digestion model coupled with Caco-2 cells models were used. Physicochemical and biological properties of curcumin encapsulated Pickering emulsions were analyzed regarding to emulsion structure, curcumin retention, in vitro digestion, in vitro anti-proliferate ability and cellular uptake. Milled starch particles stabilized Pickering emulsion system was able to protect curcumin against harsh gastric conditions. Around 80% of the encapsulated curcumin was retained after 2 h of simulated gastric digestion. By being encapsulated in Pickering emulsion, the bioaccessibility of curcumin was increased from 11% for curcumin in bulk oil phase to 28% under simulated intestinal digestion process. The resulting curcumin-loaded micelle phase from digested emulsion exhibited significant anti-cancer ability and enhanced cellular uptake. This research provides an exploratory study on the possible future application of milled starch particles stabilized Pickering emulsions as nutraceutical delivery vehicles in the creation of novel functional foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call