Abstract

BackgroundRift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated.Methodology/Principal FindingsA hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites.The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961–2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species.Conclusion/SignificanceOur study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification.

Highlights

  • Rift Valley fever (RVF) is a vector-borne disease caused by a virus (RVFV) belonging to the Bunyaviridae family, genus Phlebovirus, that affects domestic livestock and humans

  • This study brings mechanistic insight to explain why reported RVF outbreaks in Northern Senegal cannot be correlated directly to rainfall. This is done through the use of a rainfall-driven model of RVF vector populations that combines a hydrological model to simulate daily water variations of mosquito breeding sites, with mosquito population models capable of reproducing the major trends in population dynamics of the two main vectors of RVF virus in Senegal, Ae. vexans and Cx. poicilipes

  • Results show that RVF occurs during years when both species are present simultaneously in high densities

Read more

Summary

Introduction

Rift Valley fever (RVF) is a vector-borne disease caused by a virus (RVFV) belonging to the Bunyaviridae family, genus Phlebovirus, that affects domestic livestock (e.g., sheep, cattle, camels, and goats) and humans. In its most severe form, the illness can progress to hemorrhagic fever, encephalitis, or ocular disease with significant death rate. In livestock, it causes abortion and high mortality of newborns and induces important direct and indirect economic impacts. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. The assumed importance of temporary ponds and rainfall temporal distribution needs to be investigated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call