Abstract

Assessing geochemical baseline and threshold values of potentially toxic elements at adequate scales is fundamental for distinguishing geogenic contamination from anthropogenic pollution in groundwater. This study was aimed to estimate the regional threshold values of Li, Be, B, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Te, Ba, Hg, Tl, Pb, Bi, and U (elements listed according to atomic numbers) in groundwater, compare results to guidelines established for drinking water and the protection of groundwater from contamination, investigate the geographical distribution of trace elements, and assess the potential influence of water-rock interaction.A pre-selection aimed at excluding groundwater samples affected by known anthropogenic activities was carefully carried out based on hydrogeochemical characteristics of waters and considering the potential sources of contamination. The resulting dataset was comprised of 1227 groundwater sampling sites located in Sardinia (Italy). Undetected values were treated using the Regression on Order Statistics method. For elements containing >75 % of undetected values and/or a limited number of samples in the dataset (Li, Rb, Sr, Mo, Ag, Te, Tl, Sb, Hg and Bi), the threshold values were estimated using either the 95th or 97.7th percentiles. For the other elements the mean + 2SD (Standard Deviation), the median + 2MAD (Median Absolute Deviation), and the TIF (Tukey Inner Fence) estimators were also calculated.Geochemical maps allowed to recognize the threshold value of each element at different scales. Regional threshold values of the regulated elements B, Al, V, Cr, Cu and Cd in groundwater were below the Italian and World Health Organization drinking water guidelines, whereas Mn and As were above them. Regional threshold values estimated with TIF exceeded the drinking water guidelines for Ni, Se, Pb and U.Results of this study showed that high concentrations of trace elements in groundwater were primarily dependent on the corresponding amount in parent materials with which the groundwater came into contact. Physical-chemical parameters and geochemical characteristics may contribute to enhancing concentrations of some trace elements in groundwater, e.g. As via reductive dissolution of Fe(III)-Mn(IV) hydroxides/oxides, Pb via formation of stable aqueous complexes, and other elements via adsorption onto fine particles with size below 0.4 μm (i.e. the pore size of filters used).Maps drawn on the centered log-ratio (clr) transformation of hydrogeochemical data, following the CoDA (Compositional Data Analysis) approach, allowed to pinpoint critical areas to be investigated in more detail. For each geological complex, groundwater samples likely representing nearly pristine conditions were identified. The monitoring of these representative groundwater samples may help to pinpoint eventual changes in environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.