Abstract

Automatic, cost-effective, and reliable detection of neurodegenerative diseases (NDs) is one of the important issues in clinical practice. The main idea of the proposed method in this study is to utilize the advantages of gait time series that can provide low-cost and non-invasive measures, homomorphic filtering that can effectively separate muscle activity from body dynamic and recurrent neural network or cascade forward neural network that can learn sequential time-varying data. Experimental results on gait time series of 16 healthy control subjects, 13 patients with amyotrophic lateral sclerosis, 15 patients with Parkinson’s disease and 20 patients with Huntington’s disease have demonstrated high detection performance with an accuracy rate of 100 % using K-fold cross validation for all three types of NDs outperforming other existing methods. The results have also indicated thatthe use of real cepstral coefficients, oscillation components, or basic statistics feature set has improved the detection performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call