Abstract

The effect of high-pressure treatment with supercritical CO2 on the inactivation of Listeria innocua in a fish soup was investigated. The soup was inoculated with L. innocua, packaged in modified atmosphere with 50:50 or 95:5 CO2:N2, high-pressure processed (300, 350, 400 and 600 MPa, 2 min) under subcritical (T < 304 K) or supercritical conditions (T > 304 K) and stored at 4 °C for up to 53 days. Treatment at 400 and 600 MPa had a significant (p < 0.05) effect on L. innocua under both supercritical and subcritical conditions. In contrast, pressurization at 350 MPa and supercritical conditions were needed to significantly (p < 0.05) inactive L. innocua. Increased levels of CO2 in the headspace significantly (p < 0.05) reduced the bacterial load during processing, and supercritical conditions had a significant (p < 0.01) interaction with both CO2 levels and pressure. Increased storage time gave significantly increased levels of L. innocua at 400 and 600 MPa. In addition, high levels of CO2 significantly decreased (p < 0.001) growth. However, 350 MPa under supercritical conditions seemed to set the L. innocua in a permanent lag phase, with slow and steadily decreasing numbers of bacteria during storage. All the design variables resulted in significant inactivation of L. innocua, and supercritical conditions combined with high levels of CO2 inhibited the recovery of L. innocua to a large degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.