Abstract
With the rapid growth of event-based social networks (EBSNs) like Meetup, the demand for event recommendation becomes increasingly urgent. In EBSNs, event recommendation plays a central role in recommending the most relevant events to users who are likely to participate in. Different from traditional recommendation problems, event recommendation encounters three new types of information, i.e., heterogenous online+offline social relationships, geographical features of events and implicit rating data from users. Yet combining the three types of data for offline event recommendation has not been considered. Therefore, we present a Bayesian latent factor model that can unify these data for event recommendation. Experimental results on real-world data sets show the performance of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.