Abstract

Interactive multimodal information retrieval systems (IMIR) increase the capabilities of traditional search systems, by adding the ability to retrieve information of different types (modes) and from different sources. This article describes a formal model for interactive multimodal information retrieval. This model includes formal and widespread definitions of each component of an IMIR system. A use case that focuses on information retrieval regarding sports validates the model, by developing a prototype that implements a subset of the features of the model. Adaptive techniques applied to the retrieval functionality of IMIR systems have been defined by analysing past interactions using decision trees, neural networks, and clustering techniques. This model includes a strategy for selecting sources and combining the results obtained from every source. After modifying the strategy of the prototype for selecting sources, the system is re-evaluated using classification techniques. This evaluation compares the normalised discounted cumulative gain (NDCG) measure obtained using two different approaches: the multimodal system using a baseline strategy based on predefined rules as a source selection strategy, and the same multimodal system with the functionality adapted by past user interactions. In the adapted system, a final value of 81,54% was obtained for the NDCG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.