Abstract

Informative sample selection in active learning (AL) helps a machine learning system attain optimum performance with minimum labeled samples, thus improving human-in-the-loop computer-aided diagnosis systems with limited labeled data. Data augmentation is highly effective for enlarging datasets with less labeled data. Combining informative sample selection and data augmentation should leverage their respective advantages and improve performance of AL systems. We propose a novel approach to combine informative sample selection and data augmentation for multi-label active learning. Conventional informative sample selection approaches have mostly focused on the single-label case which do not perform optimally in the multi-label setting. We improve upon state-of-the-art multi-label active learning techniques by representing disease labels as graph nodes, use graph attention transformers (GAT) to learn more effective inter-label relationships and identify most informative samples. We generate transformations of these informative samples which are also informative. Experiments on public chest xray datasets show improved results over state-of-the-art multi-label AL techniques in terms of classification performance, learning rates, and robustness. We also perform qualitative analysis to determine the realism of generated images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call