Abstract

Autofocus is an important issue in electron microscopy, particularly at high magnification. It consists in searching for sharp image of a specimen, that is corresponding to the peak of focus. The paper presents a machine learning solution to this issue. From seven focus measures, support vector machines fitting is used to compute the peak with an initial guess obtained from a gradient ascent search, that is search in the direction of higher gradient of focus. The solution is implemented on a Carl Zeiss Auriga FE-SEM with a three benchmark specimen and magnification ranging from x300 to x160 000. Based on regularized nonlinear least squares optimization, the solution overtakes the literature nonregularized search and Fibonacci search methods: accuracy improvement ranges from 1.25 to 8 times, fidelity improvement ranges from 1.6 to 28 times, and speed improvement ranges from 1.5 to 4 times. Moreover, the solution is practical by requiring only an off-line easy automatic train with cross-validation of the support vector machines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.