Abstract

This study proposes the combination of fractional-order edge detection (FOED) and a chaos synchronisation classifier for fingerprint identification. Fingerprints have various morphologies and exhibit singular points, which result in fingerprint individuality. Thumbprint images are captured from subjects using an optical fingerprint reader. The identification procedure consists of three stages: image enhancement, feature extraction and pattern identification. The adjustment of grey-scale values is used to enhance the contrast of the image. In order to overcome the limitations of the integral-order method, FOED is used to improve the clarity of the ridge and valley structures in fingerprint images. Using a reference point, it provides a stable sampling window for fingerprint extraction. Multiple CS-based detectors are used to track the differences as dynamic errors between heterogeneous fingerprints, on a one-to-one basis. The maximum-likelihood method performs a comparison of these different dynamic errors to identify individuals. Using 30 laboratory subjects, the proposed hybrid methods have a faster processing time and provide more accurate fingerprint identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.