Abstract
The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variable operating conditions was monitored by a flame monitoring system based on image processing and spectral analysis. A similarity coefficient was defined to analyze the similarity of combustion behavior between two different coal types. A total of 20 flame features, extracted by the flame monitoring system, were ranked by weights of their importance estimated using ReliefF, a feature selection algorithm. The mean of the infrared signal was found to have by far the highest importance weight among the flame features. Support vector machine (SVM) was used to identify the coal types. The number of flame features used to build the SVM model was reduced from 20 to 12 by combining the methods of ReliefF and SVM, and computational precision was guaranteed simultaneously. A threshold was found for the relationship between the error rate and similarity coefficient, which were positively correlated. The success rate decreased with increasing similarity coefficient. The results obtained demonstrate that the system can achieve the online identification of coal blends in industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.