Abstract

Adequate management of a mountain forest that protects downslope areas against impacts of rockfall requires insight into the dynamics of the hillslope environment. Therefore, we applied a combined approach, using field and modelling techniques, to assess the determining factors for rockfall source areas, rockfall tracks and rockfall runout zones on a forested slope in mountainous terrain. The first objective of this study was to understand why rockfall occurs in the study area. The second objective was to translate the knowledge obtained in the field into a model that simulates rockfall dynamics on a forested slope realistically. The third objective was to assess which hillslope characteristics primarily determine the distribution of active rockfall tracks. To achieve these objectives, we made a geomorphological map of the whole study area, and we measured the major discontinuity planes in the bedrock that are exposed in the rockfall source areas. Furthermore, a test site for simulation modelling within the larger study area was defined in which both a forest and a hillslope inventory were carried out. The available data and our developed rockfall simulation model allowed us to assess the slope characteristics that mainly determine the distribution of areas affected by rockfall. We found that in decreasing order of importance, both standing and felled trees, the surface roughness and rockfall resistant shrubs primarily determine the distribution of rockfall-affected areas. Simulation tests without a forest cover produced similar rockfall runout zones as fossil rockfall events identified in the field. We believe that the combined field and modelling approach is a prerequisite for understanding how forests can protect against rockfall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.