Abstract

Emotion recognition plays an essential role in human–computer interaction. Previous studies have investigated the use of facial expression and electroencephalogram (EEG) signals from single modal for emotion recognition separately, but few have paid attention to a fusion between them. In this paper, we adopted a multimodal emotion recognition framework by combining facial expression and EEG, based on a valence-arousal emotional model. For facial expression detection, we followed a transfer learning approach for multi-task convolutional neural network (CNN) architectures to detect the state of valence and arousal. For EEG detection, two learning targets (valence and arousal) were detected by different support vector machine (SVM) classifiers, separately. Finally, two decision-level fusion methods based on the enumerate weight rule or an adaptive boosting technique were used to combine facial expression and EEG. In the experiment, the subjects were instructed to watch clips designed to elicit an emotional response and then reported their emotional state. We used two emotion datasets—a Database for Emotion Analysis using Physiological Signals (DEAP) and MAHNOB-human computer interface (MAHNOB-HCI)—to evaluate our method. In addition, we also performed an online experiment to make our method more robust. We experimentally demonstrated that our method produces state-of-the-art results in terms of binary valence/arousal classification, based on DEAP and MAHNOB-HCI data sets. Besides this, for the online experiment, we achieved 69.75% accuracy for the valence space and 70.00% accuracy for the arousal space after fusion, each of which has surpassed the highest performing single modality (69.28% for the valence space and 64.00% for the arousal space). The results suggest that the combination of facial expressions and EEG information for emotion recognition compensates for their defects as single information sources. The novelty of this work is as follows. To begin with, we combined facial expression and EEG to improve the performance of emotion recognition. Furthermore, we used transfer learning techniques to tackle the problem of lacking data and achieve higher accuracy for facial expression. Finally, in addition to implementing the widely used fusion method based on enumerating different weights between two models, we also explored a novel fusion method, applying boosting technique.

Highlights

  • In recent years, emotion recognition has gained greater significance in many areas, representing a crucial factor in human–machine interaction systems

  • The focus of this paper is on a multimodal fusion between facial expressions and an electroencephalogram (EEG) for emotion recognition

  • We combined facial expression and EEG to improve the performance of emotion recognition

Read more

Summary

Introduction

Emotion recognition has gained greater significance in many areas, representing a crucial factor in human–machine interaction systems. These applications are manifested across a variety of levels and modalities [1]. Psychologists have proposed various emotion representation models, including discrete and dimensional models [2]. Discrete emotions, such as happiness and disgust, are straightforward to understand because they are based on language. These models can fall short in expressing certain emotions in different languages and for different people. Given that most of the variance in emotions comes from two dimensions, our research implemented emotion recognition using these two dimensions

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.