Abstract

We study a new task, proactive information retrieval by combining implicit relevance feedback and collaborative filtering. We have constructed a controlled experimental setting, a prototype application, in which the users try to find interesting scientific articles by browsing their titles. Implicit feedback is inferred from eye movement signals, with discriminative hidden Markov models estimated from existing data in which explicit relevance feedback is available. Collaborative filtering is carried out using the User Rating Profile model, a state-of-the-art probabilistic latent variable model, computed using Markov Chain Monte Carlo techniques. For new document titles the prediction accuracy with eye movements, collaborative filtering, and their combination was significantly better than by chance. The best prediction accuracy still leaves room for improvement but shows that proactive information retrieval and combination of many sources of relevance feedback is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.