Abstract
Graph-based salient object detection has been widely applied in many applications, because of its excellent performance and strong theoretical basis. Basically, the performance of this type of methods depends on the correctness in foreground seed selection. In research aiming to exactly identify the seeds on foreground objects, an external prior has been defined in recent work as having an image boundary that is mostly background (called boundary prior), so the foreground seeds must locate around the image center. However, this is not the case when salient objects are spatially close to the image boundary. This problem will cause a severe error in salient object detection, because background noises are likely mixed in foreground seeds. To solve this problem, we propose a robust foreground seed selection method for salient object detection. In our method, the external prior and multiple internal image features are combined for foreground seed selection. Our method can relax the limitation of the external prior and make the foreground seed selection more adaptive and robust to diverse samples. As a result, the proposed method can generate satisfying results, no matter where the salient object is located. This advantage is demonstrated by experimental comparisons with several state-of-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.