Abstract

The strength of superalloys is strongly influenced by γ′ precipitates, whose size and volume fraction which can be adjusted by heat treatments. According to classical precipitation strengthening models, an increasing precipitate diameter should lead to a transition from weak to strong coupling of the dislocation pairs that form superdislocations in the γ′ phase. We show that long‐term annealing of the Ni‐base superalloy A718Plus at 670 and 680 °C increases the alloy's strength without significantly changing the grain size and η fraction. To understand the effect of the slight increase in γ′ size, detailed atom probe tomography (APT) was performed. Here, different field evaporation rates of the phases strongly affect the determination of the volume fraction when using the usual isosurface construction. This can be mitigated by considering the number density of atoms inside and outside the γ′ precipitates. Using an approximation of the precipitate shapes and arrangements from the APT data in atomistic simulations revealed that precipitate shearing by both, weakly and strongly coupled dislocations can occur in the same sample due to the wide distribution of precipitate sizes. These results highlight the need for advanced strengthening models that take into account the γ′ size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.