Abstract

An important factor in the usability of a brain–computer interface (BCI) is the setup and calibration time required for the interface to perform accurately. Recently, brain-switches based on the beta rebound following motor imagery of a single limb effector have been investigated as basic BCIs due to their good performance with limited electrodes, and brief training session requirements. Here, a BCI is proposed which expands the methodology of brain-switches to design an interface composed of multiple brain-controlled buttons. The algorithm is designed as a system paced interface which can recognise 2 intentional-control tasks and a no-control state based on the activity during and following motor imagery in only 3 electroencephalogram channels. An online experiment was performed over 6 subjects to validate the algorithm, and the results show that a working BCI can be trained from a single calibration session and that the post motor imagery features are both informative and robust over multiple sessions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.