Abstract

Motion correction is an important component in fMRI brain image analysis. Linear registration technique is mostly used in the process based on the assumption that there is not any shape changes of human brain during imaging process. Echo planar imaging (EPI) technique has been widely adapted in fMRI imaging to shorten encoding duration and increase temporal resolution. However, due to the magnetic field inhomogeneity caused by tissues, shape distortion and signal intensity lose are brought into fMRI images by the technique. On the other hand, subject's pose in scanner has a effect on magnetic field inhomogeneity, so the EPI distortions are subject to head movement, especially when the movement is big. As a result, most current motion correction techniques, which are based on rigid registration, cannot handle the problem. In this paper, a technique that combines EPI distortion correction and motion correction to handle the above-mentioned problem is proposed. Since it is almost impossible to obtain ground truth at present, a task-related fMRI BOLD time course image with big motion is selected as experimental material to test its performance. The image is pre-processed with the proposed EPI-motion correction scheme then analyzed by FSL feat tool. Compared with another process with only motion correction and FSL feat analysis, the experimental result using the proposed method has no false activation detection. It is suggested the proposed EPI-motion correction scheme has the ability to handle the fMRI human brain images with big motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.