Abstract
The Italian wolf (Canis lupus italicus) population has remained isolated South of the Alps for the last few thousand years. After a strong decline, the species has recolonized the Apennines and the Western Alps, while it is currently struggling to colonize the Eastern Alps. Recently, the species was detected in a lowland park connecting the Northern Apennines to the Central Alps. If the park was able to sustain a net wolf dispersal flow, this could significantly boost the connection with the Eastern Alps and the Dinaric-Balkan population. We investigated the suitability of the park as a functional ecological corridor for the wolf through the unhospitable lowland of Northern Italy. We collected wolf occurrence data in two study areas. We modeled species distribution running a separate ensemble model for each study area and then merging the output of the models to obtain an integrated suitability map. We used this map to identify corridors for the wolf adopting a factorial least-cost path and a cumulative resistant kernel approach. The connectivity models showed that only two corridors exist in the lowland areas between the Northern Apennines and the Central Alps. The Western corridor is a blind route, while the eastern corridor passes through the park and has a continuous course. However, the models also revealed a scarce resilience of corridor connectivity in the passageways between the park and the Apennines and the Prealps, which suggests that urgent management actions are necessary to ensure the future functionality of this important corridor.
Highlights
Large carnivores are top predators playing a key role in the maintenance of healthy and functional ecosystems [1]
We explored if the Ticino Natural Park could effectively represent a wolf dispersal route connecting the Northern Apennines to the Central Alps
Among the single distribution models, generalized linear models (GLM) had the lowest performance in predicting habitat suitability in the Ticino study area, while generalized boosted models (GBM) had the highest
Summary
Large carnivores are top predators playing a key role in the maintenance of healthy and functional ecosystems [1]. Despite their ecological importance, most large carnivores suffered major declines in both population size and geographic range over the twentieth century [2]. The major causes of these declines were the loss and fragmentation of habitats, the decline of prey populations and the direct persecution by humans [3, 4, 5]. In the last decades, a large-scale recovery of carnivore populations has occurred even within some of the most anthropized areas of the world, such as in Europe [6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.