Abstract

In this work, polyacrylonitrile (PAN) nanofiber mats coated with conductive polypyrrole layers were produced at the surface of gold electrodes by a two-step approach combining electrospinning and vapor phase polymerization. In the first step, smooth and uniform PAN fibers exhibiting an average diameter of 650 ± 10 nm were generated through electrospinning of 12 wt% PAN solutions. The electrospun PAN fibers were impregnated with iron(III)tosylate (FeTos), annealed at 70°C and used as a robust and stable template for the growth of a thin layer of conductive polymer by co-polymerizing pyrrole (Py) and pyrrole-3-carboyxylic acid (Py3COOH) vapors under nitrogen atmosphere. The carboxyl groups introduced in polypyrrole coatings enabled further covalent binding of a model enzyme, glucose oxidase. The effect of different parameters (concentration of FeTos into the immersion solution, time of polymerization, Py/Py3COOH molar ratio) on the PAN/PPy/PPy3COOH/GOx impedimetric biosensor response was investigated. In the best conditions tested (immersion of the PAN fibers into 20 wt% FeTos solution, polymerization time: 30 min, 1:2 Py/Py3COOH ratio), the biosensor response was linear in a wide range of glucose concentration (20 nM−2μM) and selective toward ascorbic and uric acids. A very low limit of detection (2 nM) compared to those already reported in the literature was achieved. This value enables the determination of glucose in human serum after a large dilution of the sample (normal concentrations: 3.6 mM−6.1 mM range).

Highlights

  • Among the various intrinsically conducting1 polymers (ICPs) prepared to date, polypyrrole (PPy) is one of the most widely used in biosensing applications, owing to its biocompatibility, high hydrophilic character, high stability at ambient conditions and ease of synthesis (Inzelt, 2018)

  • The enzymes are embedded in the polymeric matrix, which limits their accessibility to the substrate

  • We propose an original and efficient electroactive platform for electrochemical biosensing, based on conducting core-shell NFs produced by the combination of electrospinning and vapor phase polymerization (VPP) process

Read more

Summary

INTRODUCTION

Among the various intrinsically conducting polymers (ICPs) prepared to date, polypyrrole (PPy) is one of the most widely used in biosensing applications, owing to its biocompatibility, high hydrophilic character, high stability at ambient conditions and ease of synthesis (Inzelt, 2018). PAN, a well-studied polymer with good stability and mechanical properties, was electrospun to fabricate PAN NFs (Nataraj et al, 2012) These NFs were used as backbone non-conductive structure (core fibers), whilst facilitating the growth of PPy based coatings onto their surface. In order to secure GOx immobilization, the enzyme was covalently bound to carboxyle groups introduced in the polypyrrole coating by copolymerizing pyrrole-3-carboyxylic acid (Py3COOH) with Py. Carboxylated PPy are excellent candidates for electrochemical biosensors because they offer suitable interface for covalent grafting of biomolecules, which results in good stability and high immobilization density. To the best of our knowledge, this is the first report of an enzyme biosensor where sensing biomolecules are conjugated with carboxylated Py-coated NFs prepared by combining electrospinning and VPP of Py/Py3COOH mixtures

MATERIALS AND METHODS
RESULTS AND DISCUSSION
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call