Abstract

The combination of electrogenerated chemiluminescence (ECL) and aptamer‐gated indicator delivering (gAID) magnetic mesoporous silica nanoparticles embedded into glass fibre paper functionalised with poly(ethyleneglycol) and N‐(3‐triethoxysilylpropyl)diethanolamine allowed the development of a rapid test that detects penicillin directly in diluted milk down to 50±9 ppt in <5 min. Covalent attachment of the aptamer “cap” to the silica scaffold enabled pore closure through non‐covalent electrostatic interactions with surface amino groups, while binding of penicillin led to a folding‐up of the aptamer thus releasing the ECL reporter Ru(bpy)3 2+ previously loaded into the material and letting it be detected after lateral flow by a smartphone camera upon electrochemical excitation with a screen printed electrode inserted into a 3D‐printed holder. The approach is simple, generic and presents advantages with respect to sensitivity, measurement uncertainty and robustness compared with conventional fluorescence or electrochemical detection, especially for point‐of‐need analyses of challenging matrices and analytes at ultra‐trace levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.