Abstract
Lanthanum-modified bentonite (LMB) combined with submerged macrophytes (SM) has been a conventional means of eutrophication management in lakes in recent years, and is one of the most important methods for P removal. However, trends in nutrients and sediment enzymes at the water-sediment interface during this process have not been systematically assessed, and there are still some gaps in how abiotic properties drive changes in enzyme activity. Here, we show changes in aquatic environmental conditions under the action of different ratios of modified bentonite (0, 10%, 20%, and 30%) in combination with SM (Vallisneria natans, Potamogeton lucens, and Hydrilla verticillate) and quantify their effects on sediment enzyme activities. The results showed that the nutrient cycling at the water-sediment interface was facilitated by the combined effect of SM and LMB, which effectively reduced the overlying water nutrient concentration, increased the sediment enzyme activity and enhanced the N cycling process. Partial least squares structural equation model (PLS-SEM) showed that sediment parameters strongly influenced changes in enzyme activity, with NO3–N as the main controlling factors. Our study fills in the process of changing environmental conditions in lake water under geoengineered materials combined with macrophyte measures, especially the changes in biological properties enzyme activities, which contributes to a clearer understanding of nutrient fluxes during the management of eutrophication in lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.