Abstract

The potential threats of shale gas wastewater discharges to receiving waters is of great concern. In this study, chemical analyses and biomonitoring were performed three times in a small river that received treated wastewater over a two-year period. The results of chemical analyses showed that the concentrations of chloride, conductivity, barium, and strontium increased at the discharge site, but their concentrations decreased considerably farther downstream (≥500 m). The concentrations of toxic organic compounds (16 US EPA priority polycyclic aromatic hydrocarbons and 6 priority phthalates), trace metals (strontium, arsenic, zinc, copper, chromium, lead, cadmium, nickel, and neodymium), and natural radionuclides (40K, 238U, 226Ra, and 232Th) were comparable to the corresponding background values or did not exhibit obvious accumulation in sediments with continued discharge. Morphological and environmental DNA approaches were used to reveal the potential effects of wastewater discharges on aquatic ecosystems. The results showed that the community structure of benthic invertebrates was not altered by the long-term discharges of shale gas wastewaters. However, the biodiversity indices (richness and Shannon) from the two approaches showed inconsistencies, which were caused by multiple reasons, and that substrates had a strong influence on the morphological biodiversity indices. A multimetric index was proposed to further analyze morphological and environmental DNA data, and the results showed no significant difference between the upstream and downstream sites. Generally, the chemical and biological results both demonstrated that the discharges of shale gas wastewaters had limited impacts on river ecosystems within two years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call