Abstract

SummaryA case study located in Auckland, New Zealand, was used to quantify the magnitude of savings that may result if the SCATS adaptive traffic control system contains an explicitly combined queue estimation and offset adjustment on a cycle‐by‐cycle basis. A validated SATURN traffic model was used to evaluate five scenarios that represent the short‐run and long‐run efficiency gains resulting from progressive signal adaption with an objective of queue minimisation on the main corridors. Optimisation was applied both area‐wide, and on selected arterial corridors, using a combined split/offset optimisation routine with responsive driver behaviour to achieve a network‐wide and corridor‐specific efficiency gain. The modelling heuristic evaluates the efficiency of both the Equisat and P0 optimisation policies that would mimic a more progressive adaption of signals under SCATS. Results for the long‐run area‐wide optimisation can produce network‐wide travel‐time savings in the order of 20% and a reduction in transient queues of 28% if only selected corridors are optimised, with a 5% reduction in journey time over an average 8‐min journey. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.