Abstract

The common domain-specific approach to reliability improvement and risk reduction created the false perception that effective risk reduction can be successfully delivered solely by using methods offered by the specific domain. In standard textbooks on mechanical engineering and design of machine components, for example, there is no mention of general methods for improving reliability and reducing the risk of failure of engineering products. Accordingly, the chapter demonstrates the benefits from combining domain-independent methods and domain-specific knowledge for achieving effective risk and uncertainty reduction. In this respect, the chapter focuses on the domain-independent methods for reducing risk based on segmentation and algebraic inequalities and demonstrates that combining these methods with domain-specific knowledge helps to identify new simple and effective solutions in such mature fields like strength of components, kinematic analysis of mechanisms and electrical engineering. The meaningful interpretation of algebraic inequalities led to the discovery of new physical properties of electrical circuits and mechanical assemblies. These properties have never been suggested in standard textbooks and research literature covering the mature fields of electrical and mechanical engineering which demonstrates that the lack of knowledge of domain-independent methods for reducing risk and uncertainty made these properties invisible to domain experts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call